El rol de la inteligencia artificial en la detección de tendencias emergentes en publicaciones científicas

Autores/as

DOI:

https://doi.org/10.21830/19006586.1411

Palabras clave:

Edición, ingeniería de prompts, inteligencia artificial, modelos de lenguaje de gran tamaño, publicación científica, tendencias emergentes

Resumen

Por una parte, las revistas enfrentan retos para mantenerse actualizadas y posicionarse en un entorno muy cambiante y competitivo, lo que afecta su relevancia y citaciones; y, por otra parte, la inteligencia artificial (IA) es cada vez más una tecnología clave en la industria editorial, por su capacidad de procesar grandes volúmenes de datos y optimizar procesos. Con el objetivo de identificar la relevancia y el potencial de las herramientas de IA para mejorar los procesos de las publicaciones científicas, así como para identificar tendencias emergentes, este artículo presenta una investigación con un enfoque mixto, que integra una revisión sistemática de la literatura y recopila y analiza datos en publicaciones científicas, particularmente en ciencias sociales. Se revisan las plataformas de IA disponibles, evaluando su precisión a través de revisiones sistemáticas y análisis comparativos y, como resultado, se proponen directrices para su adecuada implementación en procesos editoriales.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Javier Mauricio Garcia-Mogollón, Universidad de Pamplona, Colombia

PhD en ciencias gerenciales y magíster en ciencias de la administración. Docente de tiempo completo de la Facultad de Ciencias Económicas y Empresariales de la Universidad de Pamplona, actualmente es editor la Revista Científica FACE y director de la Maestría en Administración. Ha publicado varios artículos en revistas científicas, libros y capítulos de libro.

William Mauricio Rojas-Contreras, Universidad de Pamplona, Colombia

PhD en educación; magíster en ciencias computacionales; especialista en ingeniería del software, e ingeniero de sistemas. Profesor titular de la Facultad de Ingenierías y Arquitectura de la Universidad de Pamplona y director del grupo de investigación de Ciencias Computacionales (CICOM), con varios artículos científicos, libros y capítulos de libro publicados.

Mauricio Sanabria, Universidad del Rosario, Bogotá D.C., Colombia

PhD en ciencias de gestión, Universidad de Caen, Francia; M.Sc. en gestión, Universidad de Rouen, Francia; magíster en administración, Universidad Nacional de Colombia, y administrador de empresas. Profesor titular y profesor distinguido, y miembro del Grupo de Investigación en Dirección y Gerencia (DIGE) de la Escuela de Administración de la Universidad del Rosario. Editor de la Revista Universidad y Empresa. Consultor para el Banco Mundial. Investigador prolífico en el campo de la administración.

Referencias bibliográficas

Agrawal, V., Bhardwaj, S., Pathak, N., Dixit, J. K., Agarwal, S., & Momin, M. (2024). Augmenting research. En Advances in Educational Technologies and Instructional Design Book Series. https://doi.org/10.4018/979-8-3693-1798-3.ch003

Albayero, M. S., Tejada-Hernández, M., & Cerritos, J. D. (2020). Una aproximación teórica para la aplicación de la metodología del enfoque mixto en la investigación en enfermería. Entorno, 69. https://doi.org/10.5377/entorno.v0i69.9562

Araujo, C. R., Llosa, M., Gutiérrez, D., Roche, M. del C., Rodríguez, A., & Araujo, A. (2024). Systematic review on artificial intelligence in the editorial management of scientific journals. EAI Endorsed Transactions on AI and Robotics, 3. https://doi.org/10.4108/airo.5643

Argilés‐Bosch, J., Ravenda, D., & García-Blandón, J. (2023). Empirical analysis of factors influencing delay in article acceptance in accounting journals. Learned Publishing, 36.

Babl, F. E., & Babl, M. P. (2023). Generative artificial intelligence: Can ChatGPT write a quality abstract? Emergency Medicine Australasia, 35(5), 809-811. https://doi.org/10.1111/1742-6723.14233

Bail, C. A. (2024). Can generative AI improve social science? Proceedings of the National Academy of Sciences, 121(21), e2314021121. https://doi.org/10.1073/pnas.2314021121

Barrios, S. M. (2021). El enfoque multimétodo como opción para abordar la investigación educativa. Gaceta de Pedagogía.

Baruffaldi, S. H., van Beuzekom, B., Dernis, H., Harhoff, D., Rao, N., Rosenfeld, D., & Squicciarini, M. G. (2020). Identifying and measuring developments in artificial intelligence: Making the impossible possible. Research Papers in Economics. https://doi.org/10.1787/5F65FF7E-EN

Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798-1828. https://doi.org/10.1109/TPAMI.2013.50

Bettany-Saltikov, J. (2012). How to do a systematic literature review in nursing: A step-by-step guide. Open University Press.

Biao, L., & Bing-Chuan, W. (2023). Human-in-the-loop reinforcement learning in continuous-action space. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2023.3289315

Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3(1), 993-1022.

Brandt, D. S., Gunter, G. A., Westerman, R. L., & Dean, C. (2017). Content management systems: Implications for library instruction and website management. Journal of Web Librarianship, 11(1), 20-35. https://doi.org/10.1080/19322909.2016.1226789

Carobene, A., Padoan, A., Cabitza, F., Banfi, G., & Plebani, M. (2024). Rising adoption of artificial intelligence in scientific publishing: Evaluating the role, risks, and ethical implications in paper drafting and review process. Clinical Chemistry and Laboratory Medicine (CCLM), 62(5), 835-843. https://doi.org/10.1515/cclm-2023-1136

Chaehan, S. (2020). Human-in-the-loop design cycles: A process framework that integrates design sprints, agile processes, and machine learning with humans. arXiv: Human-Computer Interaction. https://doi.org/10.48550/arXiv.2003.05268

Claudio-González, M. G., & Villarroya, A. (2015). Desafíos de la edición de revistas científicas en acceso abierto. Profesional de la Información, 24(5), 517-525. https://doi.org/10.3145/epi.2015.sep.02

Creamer, E. G., & Ghoston, M. (2013). Using a mixed methods content analysis to analyze mission statements from colleges of engineering. Journal of Mixed Methods Research, 7(2), 110-120. https://doi.org/10.1177/1558689812458976

Elbadawi, M., Li, H., Basit, A. W., & Gaisford, S. (2024). The role of artificial intelligence in generating original scientific research. International Journal of Pharmaceutics, 652, 123741. https://doi.org/10.1016/j.ijpharm.2023.123741

Ganjavi, C., Eppler, M. B., Pekcan, A., Biedermann, B., Abreu, A., Collins, G. S., & Cacciamani, G. E. (2024). Publishers’ and journals’ instructions to authors on use of generative artificial intelligence in academic and scientific publishing: Bibliometric analysis. BMJ, 384, e077192. https://doi.org/10.1136/bmj-2023-077192

Gayet-Ageron, A., Ben Messaoud, K., Richards, M. O., Jaksic, C. M., Gobeill, J., Liyanapathirana, J., Mottin, L., Naderi, N., Ruch, P., Mariot, Z., Calmy, A., Friedman, J., Leibovici, L., & Schroter, S. (2024). Assessment of gender and geographical bias in the editorial decision-making process of biomedical journals: A case-control study. medRxiv. http://dx.doi.org/10.1101/2024.03.15.24304220

Gimeno-Ballester, V., & Trigo-Vicente, C. (2024). El rol de la inteligencia artificial en la publicación científica: Perspectivas desde la farmacia hospitalaria. Farmacia Hospitalaria, 48(5), 246-251. https://doi.org/10.1016/j.farma.2024.06.002

González, R. (2007). El test de Turing: Dos mitos, un dogma. Revista de Filosofía, 63, 37-53. https://tinyurl.com/2dfprmbb

Grillo, R. (2023). The rising tide of artificial intelligence in scientific journals: A profound shift in research landscape. European Journal of Therapeutics. https://doi.org/10.58600/eurjther1735

Hermann, K. M., Kočiský, T., Grefenstette, E., Espeholt, L., Kay, W., Suleyman, M., & Blunsom, P. (2015). Teaching machines to read and comprehend. En Proceedings of the 28th International Conference on Neural Information Processing Systems (vol. 1). Montreal.

Herrera, J. C. (2023). Inteligencia artificial, investigación y revisión por pares: Escenarios futuros y estrategias de acción. RES. Revista Española de Sociología, 32(4), 199. https://doi.org/10.22325/fes/res.2023.184

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504-507. https://doi.org/10.1126/science.1127647

Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural Computation, 18(7), 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554-2558. https://doi.org/10.1073/pnas.79.8.2554

Houbrechts, M. (2024). Using AI for data analysis: The ultimate guide (2024). https://www.luzmo.com/blog/ai-data-analysis

Inbar, S. (2023). How scientists are using artificial intelligence: It is already making research faster, better, and more productive. http://bit.ly/3C5XZ0X

Jiang, Y. (2024). An exploration of AI aid to the first review of academic journals. Journal of New Media and Economics.

Khalifa, M., & Albadawy, M. (2024). Using artificial intelligence in academic writing and research: An essential productivity tool. Computer Methods and Programs in Biomedicine Update, 5, 100145. https://doi.org/10.1016/j.cmpbup.2024.100145

Kousha, K., & Thelwall, M. (2024). Artificial intelligence to support publishing and peer review: A summary and review. Learned Publishing, 37(1), 4-12. https://doi.org/10.1002/leap.1570

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. https://doi.org/10.1145/3065386

Kumar, S., McLennan, M., & Towns, J. (2021). Galaxy: AI-powered recommender system for tools and workflows. Computational Science & Discovery, 14(3), 035004. https://doi.org/10.1088/1749-4699/abf5f3

Kuznetsov, I., Afzal, O. M., Dercksen, K., Dycke, N., Goldberg, A., Hope, T., Hovy, D., Kummerfeld, J. K., Lauscher, A., Leyton-Brown, K., Lu, S., Mausam, Mieskes, M., N'ev'eol, A., Pruthi, D., Qu, L., Schwartz, R., Smith, N. A., Solorio, T., Wang, J., Zhu, X., Rogers, A., Shah, N. B., & Gurevych, I. (2024). What can natural language processing do for peer review? arXiv, abs/2405.06563. https://doi.org/10.48550/arXiv.2405.06563

Lainjo, B., & Tsmouche, H. (2023). The impact of artificial intelligence on higher learning institutions. International Journal of Education, Teaching, and Social Sciences, 3(2), 96-113. https://doi.org/10.47747/ijets.v3i2.1028

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324. https://doi.org/10.1109/5.726791

Legg, S., & Hutter, M. (2007). Universal intelligence: A definition of machine intelligence. Minds and Machines, 17(4), 391-444. https://doi.org/10.1007/s11023-007-9079-x

Lund, B. D., Wang, T., Mannuru, N. R., Nie, B., Shimray, S., & Wang, Z. (2023). ChatGPT and a new academic reality: Artificial intelligence-written research papers and the ethics of the large language models in scholarly publishing. Journal of the Association for Information Science and Technology, 74(5), 570-581. https://doi.org/10.1002/asi.24750

Machi, L. A., & McEvoy, B. T. (2022). The literature review: Six steps to success (4th ed.). Corwin.

McCarthy, J. (1960). Recursive functions of symbolic expressions and their computation by machine, Part I. Communications of the ACM, 3(4), 184-195. https://doi.org/10.1145/367177.367199

McCarthy, J. (2006). The birth of AI. AI Magazine, 26(4), 42-47. https://doi.org/10.1609/aimag.v26i4.1869

McDonald, D., & Burkhardt, M. (2019). The evolving role of content management systems in editorial workflows. Publishing Research Quarterly, 35(1), 23-37. https://doi.org/10.1007/s12109-018-09625-x

Messeri, L., & Crockett, M. J. (2024). Artificial intelligence and illusions of understanding in scientific research. Nature, 627(8002), 49-58. https://doi.org/10.1038/s41586-024-07146-0

Minsky, M. (1986). The society of mind. Simon and Schuster.

Minsky, M., & Papert, S. (1969). Perceptrons: An introduction to computational geometry. The MIT Press.

Musk, E., Altman, G., & Brockman, G. (2016). Introducing OpenAI. OpenAI. https://openai.com/blog/openai

Mustaine, E., & Tewksbury, R. A. (2016). A survey of social science journal editors for behind-the-scenes data on the publication process. Journal of Scholarly Publishing, 47, 231-249.

Newell, A., & Simon, H. (1956). The logic theory machine: A complex information processing system. IRE Transactions on Information Theory, 2(3), 61-79. https://doi.org/10.1109/TIT.1956.1056797

Palviainen, M., Rantanen, M., Mäenpää, T., & Laaksonen, J. (2020). AI in visual data processing for editorial and publishing workflows. IEEE Access, 8, 131229-131239. https://doi.org/10.1109/ACCESS.2020.3008925

Paz-Pacheco, E. (2024). Generative artificial intelligence (AI) in scientific publications. Journal of the ASEAN Federation of Endocrine Societies. https://doi.org/10.15605/jafes.039.01.01

Piccoli, G., Lui, T., & Ives, B. (2012). Leveraging AI for automated page layout: Integrating AI algorithms into Adobe InDesign. International Journal of Human-Computer Interaction, 28(8), 543-553. https://doi.org/10.1080/10447318.2012.672667

Pittaway, L. (2008). Systematic literature reviews. En R. Thorpe & R. Holt (Eds.), The SAGE dictionary of qualitative management research (pp. 216-218). SAGE.

Politzer-Ahles, S., Girolamo, T. M., & Ghali, S. (2020). Preliminary evidence of linguistic bias in academic reviewing. Journal of English for Academic Purposes, 47. https://doi.org/10.1016/j.jeap.2020.100895

Rivas Briceño, E. D., & Valdivia Pinto O, M. Á. (2022). El multimétodo en el quehacer investigativo de las ciencias sociales: ¿Alternativa o paradoja? Revista Educare-UPEL-IPB 2.0, 26(1), 278-296. https://doi.org/10.46498/reduipb.v26i1.1630

Roberts, L. W. (2024). Addressing the novel implications of generative AI for academic publishing, education, and research. Academic Medicine. https://doi.org/10.1097/acm.0000000000005667

Rothrock, L., & Narayanan, S. (Eds.). (2011). Human-in-the-loop simulations: Methods and practice. Springer Nature.

Russell, S. J., & Norvig, P. (1995). Artificial intelligence: A modern approach. Prentice Hall.

Saeidnia, H. R., Hosseini, E., Abdoli, S., & Ausloos, M. (2024). Unleashing the power of AI: A systematic review of cutting-edge techniques in AI-enhanced scientometrics, webometrics and bibliometrics. Library Hi Tech (ahead-of-print). https://doi.org/10.1108/LHT-10-2023-0514

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. IBM Journal of Research and Development, 3(3), 210-229. https://doi.org/10.1147/rd.33.0210

Severin, A., & Chataway, J. (2021). Overburdening of peer reviewers: A multi‐stakeholder perspective on causes and effects. Learned Publishing, 34.

Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27(3), 379-423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van den Driessche, G., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489. https://doi.org/10.1038/nature16961

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., & Hassabis, D. (2017). Mastering chess and Shogi by self-play with a general reinforcement learning algorithm. arXiv, abs/1712.01815, 1-19. https://doi.org/10.48550/arXiv.1712.01815

Singh, R., Dey, A. K., & Markopoulos, P. (2017). AI-based workflow management: Integrating artificial intelligence into editorial production pipelines. International Journal of Production Research, 55(22), 6728-6741. https://doi.org/10.1080/00207543.2017.1347319

Sobaih, A. E. E. (2024). Ethical concerns for using artificial intelligence chatbots in research and publication: Evidences from Saudi Arabia. Journal of Applied Learning & Teaching, 7(1), 93-103. https://doi.org/10.37074/jalt.2024.7.1.2

Turing, A. M. (1950). Computing machinery and intelligence. Mind, 59(236), 433-460. https://doi.org/10.1093/mind/LIX.236.433

Waheed, M., Soliman, M., Fatnassi, T., Elgammal, I., & Figueiredo, R. (2023). Exploring the major trends and emerging themes of artificial intelligence in the scientific leading journals amidst the COVID-19 era. Big Data and Cognitive Computing, 7(1), 12. https://doi.org/10.3390/bdcc7010012

Wiener, N. (1948). Cybernetics. J. Wiley.

Yin, Y., Wang, B., Zuo, H., & Childs, P. R. (2024). Effects of different human-in-the-loop approaches on human-AI co-design: A comparison between human-learning HITL approach and machine-learning HITL approach. En Volume 2A: 44th Computers and Information in Engineering Conference (CIE). https://doi.org/10.1115/DETC2024-143295

Zuo, Z., & Zhao, K. (2020). Understanding and predicting future research impact at different career stages: A social network perspective. Journal of the Association for Information Science and Technology, 72, 454-472. https://doi.org/10.1002/asi.24415

Descargas

Publicado

21-02-2025

Cómo citar

Garcia-Mogollón, J. M., Rojas-Contreras, W. M., & Sanabria, M. (2025). El rol de la inteligencia artificial en la detección de tendencias emergentes en publicaciones científicas. Revista Científica General José María Córdova, 23(49), 63–94. https://doi.org/10.21830/19006586.1411

Métricas

Crossref Cited-by logo
Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
QR Code

Algunos artículos similares: