El futuro del campo de batalla

Predicciones basadas en la tecnología en el ámbito terrestre

Autores/as

DOI:

https://doi.org/10.21830/19006586.1323

Palabras clave:

Campo de batalla futuro, dominio terrestre, operaciones militares, predicciones, tecnología

Resumen

Es innegable que las tecnologías actuales y futuras, así como el entorno operativo, están en constante evolución. Sin embargo, el verdadero desafío es identificar las tecnologías que, si están disponibles para una de las partes en un conflicto, proporcionarán una ventaja decisiva sobre un adversario tecnológicamente más débil, especialmente considerando su impacto en la naturaleza tradicional de las operaciones terrestres. Las tecnologías emergentes en los conflictos actuales ya indican tendencias y predicen la posible forma del futuro campo de batalla "algoritmizado". Este articulo explora las perspectivas sobre la posible forma del futuro campo de batalla en un horizonte de dos décadas y articula los desafíos de emplear un componente terrestre en un campo de batalla saturado de tecnología en un conflicto de alta intensidad.

Descargas

Los datos de descargas todavía no están disponibles.

Biografía del autor/a

Michal Hrnčiar, Academia de las Fuerzas Armadas del General M. R. Štefánik, Liptovský Mikuláš, Eslovaquia

Graduado de la Facultad de Fuerzas Terrestres de la Academia Militar de Liptovský Mikuláš en 2004. Completó sus estudios de doctorado, especializándose en Seguridad nacional e internacional, en 2017. Es profesor asistente en el Departamento de Táctica Militar y Arte Operacional.

Jaroslav Kompan, Academia de las Fuerzas Armadas del General M. R. Štefánik, Liptovský Mikuláš, Eslovaquia

Graduado de la Facultad de Fuerzas Terrestres de la Academia de las Fuerzas Armadas en Liptovský Mikuláš en 2005. Completó sus estudios de doctorado, especializándose en Defensa y Militar, en 2021. Es profesor asistente en el Departamento de Táctica Militar y Arte Operacional.

Jan Nohel, Universidad de Defensa, Brno, República Checa

En 2015 se graduó del programa de doctorado en Gestión Militar de la Universidad de Defensa de Brno. Actualmente es profesor adjunto en el Departamento de Tácticas y profesor a tiempo parcial en el Departamento de Apoyo a los Servicios de Inteligencia de la Universidad de Defensa de Brno.

Referencias bibliográficas

Aerospace Technology. (February 8, 2022). Autonomous swarms highlight the strategic value of manned-unmanned teaming. https://lnk.sk/lvv2

Agarwala, N. (2023). Robots and Artificial Intelligence in the Military. Obrana a strategie (Defence & Strategy), 23, 83–100. https://doi.org/10.3849/1802-7199.23.2023.02.083-100

BAE Systems. (2023). What is Manned-Unmanned Teaming? https://lnk.sk/kxi7

Bengler, Klaus & Harbauer, Christina & Fleischer, Martin. (2023). Exoskeletons: A challenge for development. Wearable Technologies, 4. https://doi.org/10.1017/wtc.2022.28

Blain, L. (2023). BAE unveils the Strix, a fascinating, tail-sitting X-wing VTOL UAV. New Atlas. https://lnk.sk/xkx2

Breaking Defense (March 8, 2023). “Advanced” ammunition flies downrange with electronic processors for airburst and guidance. https://lnk.sk/iadj

Extance, A. (2015). Military technology: Laser weapons get real. Nature, 521, 408–410. https://doi.org/10.1038/521408a

Fiebich, M. (2020). Situational Awareness and Current Information Environment. Vojenské rozhledy, 29(3), 25-40. https://doi.org/10.3849/2336-2995.29.2020.03.025-040

Finlan, A. (2021). The shape of warfare to come: A Swedish perspective 2020–2045. Defense & Security Analysis, 37(4), 472-491. https://doi.org/10.1080/14751798.2021.1995976

Foster, K. (2021). Evolving Technology, Confidence-Building Measures, and Autonomous Weapons. Interview with Paul Scharre. Harvard International Review. https://tinyurl.com/3h4apw7n

Fuller, J. F. C. (1993). The Foundations of the Science of War. U.S. Army Command and General Staff College Press.

Gibradze, G. & Guchua, A. & Gogua, G. (2022). The Role of Modern Technologies in Military Conflicts of the 21st Century. Ukrainian Policymaker, 11, 26-34. https://doi.org/10.29202/up/11/4

Global Trends. (2021). The Future of the Battlefield. Office of the Director of National Intelligence. https://lnk.sk/tzwn

Górnikiewicz, M. (2019). Wars in the later 21st century: Forecast developments in the methods of warfare. Security and Defence Quarterly, 27(5), 21-31. https://doi.org/10.35467/sdq/112930

Górnikiewicz, M. & Szczurek, T. (2018). Social Media Wars: The R-evolution Has Just Begun. Wojskowa Akademia Techniczna im. Jarosława Dąbrowskiego Press.

Grand-Clément, S. (2023). Artificial Intelligence Beyond Weapons: Application and Impact of AI in the Military Domain. UNIDIR. https://tinyurl.com/44rr4t93

Grau, L. & Bartles, C. (2022). Getting to Know the Russian Battalion Tactical Group. RUSI. https://lnk.sk/gelq

Gruss, M. (2022). The Army could take a run at developing a robotic 'Warrior Suit.' Eurosatory. https://tinyurl.com/57cttda4

Hlavizna, P., Vašíček, R., Brugioni, D. (2023). The Operating Environment and Selected Functionalities of Intelligence Support in the Czech Armed Forces - Opportunities and Challenges. Vojenské Rozhledy, 32(4), 155-170. https://doi.org/10.3849/2336-2995.32.2023.04.155-170

Hrnčiar, M. & Kompan, J. (2023). Factors Shaping the Employment of Military Force from the Perspective of the War in Ukraine. Vojenské Rozhledy, 32(1), 69-82. https://doi.org/10.3849/2336-2995.32.2023.01.069-082

Hrnčiar, M. & Spilý, P. (2011). Vedenie operácií v zastavaných priestoroch: Špecifiká zastavaného priestoru. Vojenské Reflexie, 6(2), 100-111. https://lnk.sk/owe6

Jančo, J. (2022). Mosty a ich vplyv na vojenskú mobilitu. Vojenské Reflexie, 17. 89-107. https://doi.org/10.52651/vr.a.2022.1.89-107

Koch, W. (2022). AI for Aerospace and Electronic Systems: Technical Dimensions of Responsible Design. IEEE Aerospace and Electronic Systems Magazine. 38(1), 106-111. https://doi.org/10.1109/MAES.2022.3228300

Kompan, J. (2020). Informačná bezpečnosť moderných ozbrojených síl. Aktuálne výzvy kybernetickej bezpečnosti - Special Edition.

Kopuletý, M., Palasiewicz, T. (2018). Advanced Military Robots Supporting Engineer Reconnaissance in Military Operations. In: J. Mazal et al. (Eds), Modelling and Simulation for Autonomous Systems. MESAS 2017. Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-319-76072-8_20

Křišťálová, D., Turo, T., Nohel, J., Rybanský, M., Neumann, V., Zezula, J. & Hütter, M. (2022). Modelling and Simulation of Microrelief Impact on Ground Path Extension. In: J. Mazal et al. (Eds), Modelling and Simulation for Autonomous Systems. MESAS 2021. Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-030-98260-7_6

Kulhánek, L. (2023). Laser Weapons as a New Entity to Small Firearms. Vojenské Rozhledy, 32(3), 48-62. https://doi.org/10.3849/2336-2995.32.2023.03.048-062

Lockheed Martin. (December 11, 2019). How Laser Weapons are Changing the Defense Equation. https://lnk.sk/ohnq

Latiff, R. H. (2017). Future War – Preparing for the New Global Battlefield. Knopf Publishing Group.

Lucas, G. (2022). Law, Ethics and Emerging Military Technologies: Confronting Disruptive Innovation. Routledge. https://doi.org/10.4324/9781003273912

Malick, R., Murtaza, M. & Qureshi, K. (2022). A Knowledge Graph-Based Framework for Integrated Network-Centric Warfare Strategies for Cyber-Physical-Social World. In International Conference on Cyber Warfare and Security (pp. 42-48). IEEE. https://doi.org/10.1109/ICCWS56285.2022.9998467

Matiz-Rojas, A. H., & Fernández-Camargo, J. A. (2023). On the use of artificial intelligence as a means and method in armed conflicts. Revista Cientifica General Jose Maria Cordova, 21(42), 525–549. https://doi.org/10.21830/19006586.1151

Mazal, J., Rybanský, M., Bruzzone, A. G., Kutěj, L., Scurek, R., Foltin, P. & Zlatník, D. (2020). Modeling of the microrelief impact on the cross-country movement. In: Proceedings of the 22nd International Conference on Harbor, Maritime and Multimodal Logistic Modeling & Simulation (pp. 66-70). https://doi.org/10.46354/i3m.2020.hms.010

Morgan, F. E., Boudreaux, B., Lohn, A. J., Ashby, M., Curriden, C., Klima, K. & Grossman, D. (2020). Military Applications of Artificial Intelligence: Ethical Concerns in an Uncertain World. RAND Corporation, 2020. https://www.rand.org/pubs/research_reports/RR3139-1.html

Mudie, K., Billing, D., Garofolini, A., Karakolis, T. & LaFiandra, M. (2021). There is a need for a paradigm shift in the development of military exoskeletons. European Journal of Sport Science, 22. 1-12. https://doi.org/10.1080/17461391.2021.1923813

NATO Term. The Official NATO terminology database [online]. https://nso.nato.int/natoterm/Web.mvc

NATO. (June 22, 2023). Emerging and disruptive technologies. https://www.nato.int/cps/en/natohq/topics_184303.htm

Nohel, J., Stodola, P., Flasar, Z., Křišťálová, D., Zahradníček, P., Rak, L. (2023). Swarm Maneuver of Combat UGVs on the Future Digital Battlefield. In: J. Mazal, et al. Modelling and Simulation for Autonomous Systems. MESAS 2022. Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-031-31268-7_12

Petrosyan, M. (2023). The Role of Non-State Actors in Modern Warfare: The Case of Syria and Nagorno-Karabakh. Journal of Balkan and Near Eastern Studies, 26(2), 149-163. https://doi.org/10.1080/19448953.2023.2233364

Pickrell, R., (2019). U.S. Army soldiers will soon be armed with these game-changing drones that fit in the palm of your hand. Business Insider. https://www.businessinsider.com

Pong, B. (2022). The Art of Drone Warfare. Journal of War & Culture Studies, 15(4), 377-387. https://doi.org/10.1080/17526272.2022.2121257

Rolenec, O., Šilinger, K., Sedláček, M. (2022). Algorithm Development of the Decision-Making Process of an Engineer Specialization Officer. In: J. Mazal, et al. Modelling and Simulation for Autonomous Systems. MESAS 2021. Lecture Notes in Computer Science. Springer. https://doi.org/10.1007/978-3-030-98260-7_18

Rolenec, O., Záleský, J., Šilinger, K., Hampelová, L. (2023). Increasing Survivability of the Battalion Command Post against Artillery Fire Using Antenna Extension. Advances in Military Technology, 18(1), 67-77. https://doi.org/10.3849/aimt.01731

Rossiter, A. (2020). The impact of robotics and autonomous systems (RAS) across the conflict spectrum. Small Wars and Insurgencies, 31(4), 691-700. https://doi.org/10.1080/09592318.2020.1743481

Scharre, P. (2019). Army of None: Autonomous Weapons and the Future of War. W. W. Norton & Company.

Spišák, J. (2022). Military Aspects of the War in Ukraine. Vojenské Rozhledy, 31(4), 103-118. https://doi.org/10.3849/2336-2995.31.2022.04.103-118

Šlebir, M. (2022). Re-examining the center of gravity: Theoretical and structural analysis of the concept. Revista Cientifica General Jose Maria Cordova, 20(40), 1025–1044. https://doi.org/10.21830/19006586.979

Turaj, M. (2019). Safety of Friedly Forces During Close Air Support. In National and International Security, (pp. 503-510). Minister Obrany Slovenskej Republiky. https://lnk.sk/locw

Turaj, M. & Bučka, P. (2020). Teória realizmu a jej prístup k skúmaniu bezpečnosti. In Teoretické prístupy k skúmaniu bezpečnosti. KEY Publishing.

Valouch, J. (2016). Directed Energy Weapons as a Means to Development of Capabilities of the Armed Forces. Vojenské Rozhledy, 25(3), 61-81. https://lnk.sk/crjm

Varecha, J. (2020a). Hodnotenie parametrov bojového potenciálu a bojovej sily ozbrojených síl. In National and International Security 2020 (pp. 507-513). https://lnk.sk/ro26

Varecha, J. (2020b). Zvyšovanie presnosti a hospodárnosti delostreleckej paľby. Vojenské Reflexie, 15(2), 122-152. https://lnk.sk/axg4

Varecha, J. & Majchút, I. (2019). Modeling of artillery fire and simulation of its efficiency. In The Knowledge-Based Organization 2019 (pp. 174-180). https://doi.org/10.1515/kbo-2019-0134

Višnai, K. & Kandera, B. (2021). Anti-collision systems of unmanned aerial vehicles. UNIZA Collections, 9. https://doi.org/10.26552/pas.Z.2021.1.31

Wang, S-Y, Liu, S-B, Guo, Y-N, & Ghan, Ch. (2013). A v-shaped cavity camouflage coating, Optics & Laser Technology, 45, 666–670. https://doi.org/10.1016/j.optlastec.2012.05.014

Wu, Y.-N., Norton, A., Zielinski, M. R., Kao, P.-C., Stanwicks, A., Pang, P., Cring, C. H., Flynn, B., & Yanco, H. A. (2022). Characterizing the Effects of Explosive Ordnance Disposal Operations on the Human Body While Wearing Heavy Personal Protective Equipment. Human Factors: The Journal of the Human Factors and Ergonomics Society, 64(7), 1137-1153. https://doi.org/10.1177/0018720821992623

Yeadon, S. (2021). Advancing an Understanding of Military, Robotic Exoskeletons. Infantry, 109(4), 59-65.

Zahradníček, P., Rak, L. & Zezula, J. (2022). Future environment and robotic autonomous systems. Vojenské Reflexie, 17(2), 56-72. https://doi.org/10.52651/vr.a.2022.2.56-72

Zahradníček, P., Botík, M., Rak, L. & Hrdinka, J. (2023). Modern Battlefield and Necessary Reflection in Military Leader’s Education and Training. Vojenské Rozhledy, 32(4), 110-122. https://doi.org/10.3849/2336-2995.32.2023.04.110-122

Zůna, P. (2021). Paradigmata vojenské taktiky. H.R.G. spol. s r.o.

Descargas

Publicado

06-03-2025

Cómo citar

Hrnčiar, M., Kompan, J., & Nohel, J. (2025). El futuro del campo de batalla: Predicciones basadas en la tecnología en el ámbito terrestre. Revista Científica General José María Córdova, 23(49), 277–296. https://doi.org/10.21830/19006586.1323

Métricas

Estadísticas de artículo
Vistas de resúmenes
Vistas de PDF
Descargas de PDF
Vistas de HTML
Otras vistas
QR Code